76 research outputs found

    Deficits in visual system functional connectivity after blast-related mild TBI are associated with injury severity and executive dysfunction

    Get PDF
    INTRODUCTION: Approximately, 275,000 American service members deployed to Iraq or Afghanistan have sustained a mild traumatic brain injury (mTBI), with 75% of these incidents involving an explosive blast. Visual processing problems and cognitive dysfunction are common complaints following blast‐related mTBI. METHODS: In 127 veterans, we examined resting fMRI functional connectivity (FC) of four key nodes within the visual system: lateral geniculate nucleus (LGN), primary visual cortex (V1), lateral occipital gyrus (LO), and fusiform gyrus (FG). Regression analyses were performed (i) to obtain correlations between time‐series from each seed and all voxels in the brain, and (ii) to identify brain regions in which FC variability was related to blast mTBI severity. Blast‐related mTBI severity was quantified as the sum of the severity scores assigned to each of the three most significant blast‐related injuries self‐reported by subjects. Correlations between FC and performance on executive functioning tasks were performed across participants with available behavioral data (n = 94). RESULTS: Greater blast mTBI severity scores were associated with lower FC between: (A) LGN seed and (i) medial frontal gyrus, (ii) lingual gyrus, and (iii) right ventral anterior nucleus of thalamus; (B) V1 seed and precuneus; (C) LO seed and middle and superior frontal gyri; (D) FG seed and (i) superior and medial frontal gyrus, and (ii) left middle frontal gyrus. Finally, lower FC between visual network regions and frontal cortical regions predicted worse performance on the WAIS digit‐symbol coding task. CONCLUSION: These are the first published results that directly illustrate the relationship between blast‐related mTBI severity, visual pathway neural networks, and executive dysfunction – results that highlight the detrimental relationship between blast‐related brain injury and the integration of visual sensory input and executive processes

    Altered Small-World Brain Networks in Schizophrenia Patients during Working Memory Performance

    Get PDF
    Impairment of working memory (WM) performance in schizophrenia patients (SZ) is well-established. Compared to healthy controls (HC), SZ patients show aberrant blood oxygen level dependent (BOLD) activations and disrupted functional connectivity during WM performance. In this study, we examined the small-world network metrics computed from functional magnetic resonance imaging (fMRI) data collected as 35 HC and 35 SZ performed a Sternberg Item Recognition Paradigm (SIRP) at three WM load levels. Functional connectivity networks were built by calculating the partial correlation on preprocessed time courses of BOLD signal between task-related brain regions of interest (ROIs) defined by group independent component analysis (ICA). The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads. Our results showed: 1) at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2) in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3) the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency. These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC. SZ show distinctly inefficient and variable network structures in response to WM load increase, comparing to stable highly clustered network topologies in HC

    Effects of a balanced translocation between chromosomes 1 and 11 disrupting the DISC1 locus on white matter integrity

    Get PDF
    Objective Individuals carrying rare, but biologically informative genetic variants provide a unique opportunity to model major mental illness and inform understanding of disease mechanisms. The rarity of such variations means that their study involves small group numbers, however they are amongst the strongest known genetic risk factors for major mental illness and are likely to have large neural effects. DISC1 (Disrupted in Schizophrenia 1) is a gene containing one such risk variant, identified in a single Scottish family through its disruption by a balanced translocation of chromosomes 1 and 11; t(1;11) (q42.1;q14.3). Method Within the original pedigree, we examined the effects of the t(1;11) translocation on white matter integrity, measured by fractional anisotropy (FA). This included family members with (n = 7) and without (n = 13) the translocation, along with a clinical control sample of patients with psychosis (n = 34), and a group of healthy controls (n = 33). Results We report decreased white matter integrity in five clusters in the genu of the corpus callosum, the right inferior fronto-occipital fasciculus, acoustic radiation and fornix. Analysis of the mixed psychosis group also demonstrated decreased white matter integrity in the above regions. FA values within the corpus callosum correlated significantly with positive psychotic symptom severity. Conclusions We demonstrate that the t(1;11) translocation is associated with reduced white matter integrity in frontal commissural and association fibre tracts. These findings overlap with those shown in affected patients with psychosis and in DISC1 animal models and highlight the value of rare but biologically informative mutations in modeling psychosis

    Management of Adolescent Substance Use Disorders, With an Emphasis on Cannabis Use Disorders

    No full text

    NAC for cannabis use disorder and depression

    No full text

    Replicated Evidence of Absence of Association between Serum S100B and (Risk of) Psychotic Disorder

    Get PDF
    Contains fulltext : 125835.pdf (publisher's version ) (Open Access)BACKGROUND: S100B is a potential marker of neurological and psychiatric illness. In schizophrenia, increased S100B levels, as well as associations with acute positive and persisting negative symptoms, have been reported. It remains unclear whether S100B elevation, which possibly reflects glial dysfunction, is the consequence of disease or compensatory processes, or whether it is an indicator of familial risk. METHODS: Serum samples were acquired from two large independent family samples (n = 348 and n = 254) in the Netherlands comprising patients with psychotic disorder (n = 140 and n = 82), non-psychotic siblings of patients with psychotic disorder (n = 125 and n = 94) and controls (n = 83 and n = 78). S100B was analyzed with a Liaison automated chemiluminescence system. Associations between familial risk of psychotic disorder and S100B were examined. RESULTS: Results showed that S100B levels in patients (P) and siblings (S) were not significantly different from controls (C) (dataset 1: P vs. C: B = 0.004, 95% CI -0.005 to 0.013, p = 0.351; S vs. C: B = 0.000, 95% CI -0.009 to 0.008, p = 0.926; and dataset 2: P vs. C: B = 0.008, 95% CI -0.011 to 0.028, p = 0.410; S vs. C: B = 0.002, 95% CI -0.016 to 0.021, p = 0.797). In patients, negative symptoms were positively associated with S100B (B = 0.001, 95% CI 0.000 to 0.002, p = 0.005) in one of the datasets, however with failure of replication in the other. There was no significant association between S100B and positive symptoms or present use or type of antipsychotic medication. CONCLUSIONS: S100B is neither an intermediate phenotype, nor a trait marker for psychotic illness
    corecore